Robotics / Mechatronics

Level II Unit Outline

Unit 1: Agenda Book Review/Classroom Rules

- Adhere to the school rules and expectations
- Adhere to the shop rules and expectations
- Follow protocols
- Follow routines \& procedures
- Follow the protocol for each drill: fire, lockdown, shelter in place, etc.

Unit 2: Safety, First Aid, Personal Protective Equipment and Shop Attire

- Identify, discuss, locate first aid and blood borne kits
- Identify, locate and demonstrate function and purpose of the Emergency Eye Station
- Identify, discuss, locate fire extinguisher
- Identify, distribute and discuss function and uses of protective eyewear, appropriate personal protective equipment (PPE) required in shop, and acceptable shop attire
- Identify, show location and discuss function and uses of the SDS (Safety Data Sheets) and how to interpret the information about paints and aerosols, content precautions, material labeling
- Equipment safety protocols
- Identify, demonstrate shop ventilation systems where applicable
- Identify locate and discuss function of shop flammable cabinet where applicable
- Discuss and demonstrate shop housekeeping of supplies, work stations and room maintenance
- Discuss and identify electrical safety considerations in the shop area
- Compile a safety section in the student shop notebook
- Identify, demonstrate air gauge function and operation where applicable
- Completion of online safety course and successful passing of safety test(s)

Unit 3: Tools, Usage, and Maintenance II

- Identify a tool or machine, either through pictures or physical objects
- Describe the general category of use for the tool/machine
- Note one element of safe operation needed specifically for that tool.
- Demonstrate the basic care, proper maintenance, and use of hand, portable, and stationary tools related to the Building and Construction trades
- Maintain a safe and healthful working environment

Unit 4: Materials II

- Application of statics to materials and material strength applications
- Material states
- Material equilibrium
- Material applications

Unit 5: Engineering Mechanics II

- Equivalent systems of forces
- Resultants and distributed forces
- Equilibrium of rigid bodies
- Centers of gravity
- Moments of inertia
- Friction
- Simple Machines

Unit 6: Pneumatics

- Understand compressed air production, purification, and distribution
- Understand the construction/operation of components in a pneumatic control system
- Identify and use control schematics
- Build and troubleshoot pneumatic circuits

Unit 7: Intro to Electricity II

- Describe the basic concepts of matter, energy sources, and electrical current flow
- Test performance of electrical, electronic, mechanical, or equipment
- Maintain electronic equipment
- Causes of operational problems or failures
- Document design or operational test results

Unit 8: Basic Electronic II

- Prepare engineering sketches or specifications for construction, relocation, or installation of equipment or systems
- Test electrical circuits or components for proper functioning
- Analyze the combination of Series-Parallel circuits
- Control power supply connections
- Create electrical schematics.
- Understand the concepts of Voltage and Current Dividers
- Analyze information and evaluate results

Unit 9: Digital Electronics II

- Explore the fundamentals of digital electronics
- Explain the basic principles of digital logic
- Differentiate Boolean and binary systems
- Describe combinatorial logic
- Use proper test and measurement equipment

Unit 10: Intro to Programming II

- Discuss and compare machine languages
- Higher-level programming languages
- Compiler
- Types of programming errors
- Demonstrate a simple program

Unit 11: Intro to Mechanical Design and Mechanical Drawing II

- Demonstrate how to hand-draw mechanical designs
- Translate hand drawn design to a 3D CAD program (SOLID Works)
- Create original 3D designs and modify existing designs
- Implement design on a 3D Printer

Unit 12: Current Events in Mechatronics, Industry and Engineering II

- Research and produce mechatronics current events presentations
- Produce an individual weekly slide presentation on a current event topic related to current technological and engineering trends following a rubric of required components

Unit 13: Robotic Theory II

- Learn how electric motors work
- Learn how to debug a motor electrical control system
- Learn to program and control industrial robots and robot simulators

Unit 14: Career Readiness \& Professionalism II

- Develop personal and professional skills
- Complete an online workshop to teach and develop their professional attitudes
- Demonstrate their ability to be on time, interface professionally, work in teams and also show initiative working independently

Robotics / Mechatronics
New Jersey Student Learning Standards (NJSLS)

NJ Learning Standards CTE.9.3

CONTENT AREA: 9.3 CAREER AND TECHNICAL EDUCATION

SCIENCE, TECHNOLOGY, ENGINEERING \& MATHEMATICS CAREER CLUSTER ${ }^{\circledR}$

Number	Standard Statement
By the end of Grade 12, Career and Technical Education Program completers will be able to:	
CAREER CLUSTER ${ }^{\text {: }}$	SCIENCE, TECHNOLOGY, ENGINEERING \& MATHEMATICS (ST)
9.3.ST. 1	Apply engineering skills in a project that requires project management, process control and quality assurance.
9.3.ST. 2	Use technology to acquire, manipulate, analyze and report data.
9.3.ST. 3	Describe and follow safety, health and environmental standards related to science, technology, engineering and mathematics (STEM) workplaces.
9.3.ST. 4	Understand the nature and scope of the Science, Technology, Engineering \& Mathematics Career Cluster and the role of STEM in society and the economy.
9.3.ST. 5	Demonstrate an understanding of the breadth of career opportunities and means to those opportunities in each of the Science, Technology, Engineering \& Mathematics Career Pathways.
9.3.ST.6	Demonstrate technical skills needed in a chosen STEM field.
PATHWAY:	ENGINEERING \& TECHNOLOGY CAREER PATHWAY (ST-ET)
9.3.ST-ET.1	Use STEM concepts and processes to solve problems involving design and/or production.
9.3.ST-ET. 2	Display and communicate STEM information.
9.3.ST-ET. 3	Apply processes and concepts for the use of technological tools in STEM.
9.3.ST-ET. 4	Apply the elements of the design process.
9.3.ST-ET.5	Apply the knowledge learned in STEM to solve problems.
9.3.ST-ET. 6	Apply the knowledge learned in the study of STEM to provide solutions to human and societal problems in an ethical and legal manner.
PATHWAY:	SCIENCE \& MATHEMATICS CAREER PATHWAY (ST-SM)
9.3.ST-SM. 1	Apply science and mathematics to provide results, answers and algorithms for engineering and technological activities.
9.3.ST-SM. 2	Apply science and mathematics concepts to the development of plans, processes and projects that address real world problems.
9.3.ST-SM. 3	Analyze the impact that science and mathematics have on society.
9.3.ST-SM. 4	Apply critical thinking skills to review information, explain statistical analysis, and to translate, interpret and summarize research and statistical data.

